Name \qquad Date \qquad

1. Use the prisms to find the volume.

- The rectangular prisms pictured below were constructed with 1 cm cubes.
- Decompose each prism into layers in three different ways, and show your thinking on the blank prisms.
- Complete each table.
a.

Number of Layers	Number of Cubes in Each Layer	Volume of the Prism
		cubic cm
		cubic cm
		cubic cm

b.

Number of Layers	Number of Cubes in Each Layer	Volume of the Prism
		cubic cm
		cubic cm
		cubic cm

2. Stephen and Chelsea want to increase the volume of this prism by 72 cubic centimeters. Chelsea wants to add eight layers, and Stephen says they only need to add four layers. Their teacher tells them they are both correct. Explain how this is possible.

3. Juliana makes a prism 4 inches across and 4 inches wide but only 1 inch tall. She then decides to create layers equal to her first one. Fill in the chart below, and explain how you know the volume of each new prism.

Number of Layers	Volume	Explanation
3		
5		
7		

4. Imagine the rectangular prism below is 4 meters long, 3 meters tall, and 2 meters wide. Draw horizontal lines to show how the prism could be decomposed into layers that are 1 meter in height.

It has \qquad layers from top to bottom.

Each horizontal layer contains \qquad cubic meters.

The volume of this prism is \qquad

